
comes down to transparency, to an exposure of the givens of a
contemporary operating system, the role of free software is clear.
Meaning and intention are arrayed across megabytes of source code
within an active community of coders. The idioms and idiosyncrasies of
so-called high level languages can be unravelled. And, in addition to a
vast pluggable tool-set we can trace and monitor active process with
applications such as strace and GDB. OS nature operates as a shorthand
for this artistic modus operandi expressed in the works of the author,
Martin Howse, and other free software inspired explorers such as Erich
Berger and Aymeric Mansoux of goto10.org fame.

Plug and play
It may well chime as an ill-used phrase from the land of the proprietary,
implying a tedious click-through dance with drivers, yet plug and play is
perhaps better suited as a joyful motto for pluggability, again borrowing
much from the Unix way. As we’ve seen, and under common everyday
piping examples at the command-line such as grepping through mail or
redirecting the output of find to a logfile, Unix is all about plugging
together small, highly specialised tools and filters. It’s a creative act which
contrasts well with a GUI designed in Pavlovian labs for conditioned
input. There’s no question in that instance of thinking outside the
widget-driven window. Piping sits on a par with programming; after all,
using brackets, redirection operators such as > and >>, and with the |
pipe, tee and named pipes or FIFO (First In First Out) buffers, together of
course with a well honed array of Unix tools, complex applications can
readily be constructed. Pluggability is very much about this environment-
driven and highly creative process. Pluggability implies familiar
programming terms such as glue code and modularity and stresses
connectivity. Redirection is the first step on the road to pure patchability;
assemblages of tiny well specified commands enlivened by the act of

data piping. It’s easy to see how such a volatile
process lends itself to live performance.

The usual state of affairs is to input our
commands to the shell, the command-line, by way
of keyboard, with such entry referred to as
standard in or STDIN. It’s no surprise that output to
the terminal is to STDOUT. Yet we can choose to
redirect to files and named pipes either at the input
or output stages using the >, >> or < operator.

By way of noisy example cat /usr/src/linux/* > /
dev/dsp throws the Linux kernel source code as
raw 8 bit data straight at the soundcard. Use of the
>> operator appends a stream to existing data. Yet,
what’s really revolutionary is the pipeline signalled
by the | character; we can quite simply pipe data
from the output of one tool or filter to the input of
another. A classic example, provided by Tom
Truscott, inventor of Usenet, prints out the
frequencies of each word in a file:

It’s an example which could well stretch the
imagination of those working with text; digital
poets such as Alan Sondheim, Ted Warnell and
Mez Breeze swamping Net art mailing lists with a
modern, fanciful and highly generative vocabulary.
Generic piping tools such as cat, in concert with
old friends like grep can well be used to further
textual experiment which, in the manner of

Art

In the first of an occasional series examining the artistic uses of free software, Martin Howse

specifies a totally pluggable environment for advanced audio and textual experimentation

You’ve Got Pluggability

52 LinuxUser & Developer LinuxUser & Developer 53

Art

Traced back to its pure Unix roots, pluggability is very much a command-line affair maxed

out by simple shell scripts and well tuned tools

Destruction in art and computation; day one of degenerative.php previous to character

corruption triggered by each page visit

CONNECTIVITY, OPEN
FLOW, PLUGGABILITY,

MULTIMEDIA PATCHING,
CALL IT WHAT YOU WILL,

PINS DOWN TO PIPES
AND APPLICATIONS, THE

UNIX COMMAND-LINE
ENVIRONMENT WITH
TOOLS SUCH AS CAT,

TAC, MKFIFO, AND DD

F
ree software isn’t just about open
applications, it’s about exposed and extruded
code, and a modular, highly constructivist

approach to data. We all know, without having to
dig too deep into compiler technology, that code is
just plain old data. Yet code can equally well bend
data, information, and thus meaning, acting as a
healthy foundation for contemporary artistic
activity. Information theory meets expressionism as
we can talk of a signal to noise ratio in relation to
artistic intention. Terms and data bend and cross
disciplines under strong cultural forces of
attraction. And free software artists value openness
over functionality on the road to a promiscuous
operating system; totally active and open software
which we’ll map out across further instalments
within this series.

Data bending and code promiscuity imply a
fine-grained connectivity both between
applications and between machines, across
operating systems designed only with a functional,
secure networked relation in mind. Data bending
reads the equivalence of data and code espoused
by the Unix way as a sign of promiscuity, of sheer
pluggability, reversing the very terms of the
originator of Unix philosophy, Ken Thompson,
within his key text Reflections on Trusting Trust.
Pluggability is both key to the Unix way, and at the
same time offers a true road to security hell
through necessary implication of the viral as a

direct result of the flattening of data and code; a lack of distinction
effected by the compiler which is so central to Thompson’s essay. Equally,
the unwritten rules which comprise the Unix way, the true path to hacker
heaven, stress a modularity, an ease of interface, a transparent simplicity
of text streaming and format which implies openness and ease of
transport. Self-creating or modifying code is equally praised, if somewhat
feared as lazy programming paradigm. Unix sits on a knife edge which is
pluggability, an engaging and dangerous realm of artistic exploration.

Connectivity, open flow, pluggability, multimedia patching, call it
what you will, pins down to pipes and applications, the Unix command-
line environment with tools such as cat, tac, mkfifo, and dd, and, with
what can well be considered as further environments interacting with the
glue of the shell, the mighty GNU Emacs and both Pure Data (PD) and
SuperCollider. A full network can be expressed further with a veritable
jungle of infrastructures and fruity hanging apps, such as Open Sound
Control (OSC) and associates, and JACK (JACK Audio Connection Kit),
with its almost endless list of helpers.

Pluggability under such a network of tools sets out on the very first
steps towards the specification of a promiscuous operating system, a
totally open, totally active, well connected patchable command-line
driven system contrasting heftily with the dull determinism and static
ring fencing of GUI containment.

At the same time pluggability means exploring the key artistic notion
of OS nature, an active parallel to the aged landscape painting of visual
art. Artistic endeavour is all about taking nothing for granted. The free
and totally open field of coding in theory presents endless possibilities,
yet a solid awareness of what has gone before and exactly what is
implicated within the tower of abstractions ascending from bare
hardware is essential. Speaking the language of the processor shifts our
meaning irrevocably, as intention becomes seriously clouded. Yet when it

cat file | tr -cs ‘[A-Z][a-z]’ ‘\012’ | sort | uniq -c | sort -nr | more

54 LinuxUser & Developer LinuxUser & Developer 55

concrete poetry, can well expand into the visual.
Further tools of interest here would include sed,
awk, sort, diff, and csplit. Indeed sed and awk
feature prominently in a key text, UNIX for Poets,
from Kenneth Ward Church of AT&T Bell Labs,
birthplace of Unix.

Yet, it’s no great surprise that sheer pluggability
blossoms most fruitfully within the realm of
advanced audio experimentation. Despite
extensions such as GEM and PDP which pull PD
kicking and screaming into the realm of the visual,
it’s worth remembering that PD was originally
solely concerned with audio. And though PD code
daughter Packet Forth (PF) is concerned with data
packets which well approximate to a visual frame,
when viewed as patching, pluggability is a more
appropriate concept within the world of audio.
Indeed, audio patchability, corralled within the

computer, borrows very much in terminology,
interface and workflow from a studio world of
patch bays and corded analogue synths. There’s
little imagination at work in the titling of core
application JACK. Untied from frame rates and
fixed packet sizes, and also the sheer memory and
processing demands involved in shifting and
processing high quality visual material, audio
presents a more fluid subject. And perhaps the
pluggable model is simply less appropriate for the
image. It’s a complex argument which has much
to do with meaning and the pure physicality of
well amplified sound waves. Both also stand in a
differing relation to time and meaning. Audio can
reveal complex systems in a physical manner,
systematics which well suit the paradigm of
programming. In contrast, video in this context is
all too ready to lean on the crutch of meaning, of
narrative. The modern VJ is very much in need of a
fresh, new model for visual construction.

Cat power
Pluggability is all about assembling a towering,
tottering environment of modular apps for purely
playful pluggability. We’ve briefly encountered
staple cat, which can readily be untied from a
singular process with the use of FIFOs or named
pipes. FIFOs are useful if we need to pipe to and

from an application which expects to deal with a file rather than STDIN
or STDOUT. A regular FIFO is constructed using a mkfifo MYFIFO
incarnation, and forthwith we can pipe to and from MYFIFO with wild
abandon. However, it’s worth remembering that only one copy of the
input message cats its way through the FIFO. Forget using the FIFO as a
multiplexer furnishing multiple copies of a single stream. The rather
deprecated /dev/fanout tool is more appropriate here, yet cut and splice
functionalities in the latest kernel series are more appropriate for the
hardcore hacker artist’s attention.

Cat can also be well considered in concert with it’s looking glass
playmate tac which does exactly the same thing in reverse. And tee is
also a decent addition to the party, working to multiplex standard input
to multiple files. Erich Berger is probably one of the most famous artists
to explore cat, under an audiovisual performance of the same name
premiered at world renowned art hacker festival Pixel in Norway last
October. His cat nominates the GNU/Linux operating system as key
instrument, a prime example of OS nature activity, and makes use of
basic cat operations to generate audio and video, controlling feedback of
these dual streams through mixer settings. Both data types are flattened
to the physical, as audio is in some sense catted to the video projector
through plain cable.

Yet, it’s well worth bearing in mind that this cat still has claws and
teeth, particularly when running rock-and-roll-style (live fast, die young)
as root where much of the more exciting cat action is to be had. Always
check where you’re catting to, particularly in the case of devices. Never
cat to /dev/hda, /dev/sda or any of their partitioned offspring unless

attempting an OS hari-kiri, or bluntly translating a Pete Townshend
guitar and amplifier collision to the more staid world of live laptop
performance (see Destruction in Code).

Cat can be used to implement simple audio feedback loops and
playful filtering scripts can easily be constructed in BASH, Python, or, for
concise effect, in CHICKEN Scheme. For recent work as part of the
PLENUM project in collaboration with mavericks KOP (Kingdom of
Piracy), Martin Howse briefly coded a few command-line apps in the
latter language to ease piping operations. These include interfaces to
OSC (Open Sound Control), another very useful connectivity framework
which can be used to glue together all possible pluggables, a wrapper
around a basic neural network implementation, and jekyll, an eccentric
sample slicing app. Jekyll cuts piped data according to step size and
sample size. A command such as:

cat /dev/hda1 | jekyll 20 10 > /dev/dsp

chops a raw stream of partition bytes into ten sample long chunks at
intervals of twenty samples before passing these on to the soundcard.

Further code includes devdisplay, which opens a user-specified
window to display raw data piped to the command. And, more
recently, the code base has expanded to allow for piping data,
borrowing code from ancient cassette tape interfaces for home
computers, across the airwaves.

Pure pipes
Of course the king of all pluggable apps, indeed one which, alongside
the Unix model, has spawned so many extensions and extension coding
paradigms that it could be dubbed the father of modern creative
computing, is Pure Data. Yet though PD presents the ultimate pluggable
environment, as can readily be garnered from screen shots exhibiting
networked tangles of connected code objects and abstractions, PD
chooses rather selfishly to play less well with others, and perhaps could
be accused of enforcing a less than code-centric approach to
pluggability. Nevertheless, users always have a well designed extension
API to work with and can equally well batter down the gates of PD with
the blunt tools of piping, or more refined OSC and JACK.

Aside from obvious internal piping of signal and control data, by way
of the visible interconnects or patch cords and simple send and receive
objects which assist in clearer patching, PD supports access to named
pipes only by way of the piperead~ and pipewrite~ extensions bundled
as part of the ext13 library. After downloading and installing from the
central PD Sourceforge repository such extensions must be specified
within the user’s .pdrc or at the command-line with a -lib path/to/
library switch. Usage is well documented, yet, as with all FIFOs, care
must be taken in opening and closing named pipes to avoid breaking
or blocking the pipe. PDP, a packet oriented, largely graphical
extension for PD authored by Tom Schouten, supports a piped
interface under the pdp_rawin object.

PDP, or Pure Data Packets, furnished a starting
point for one of the most lively experiments in
code pluggability, Packet Forth (PF), also from Tom
Schouten, which can be described in short as the
ultimate multimedia glue language, based on Forth
and inspired heavily by PD’s patching metaphor. PF
interfaces well with the Guile embedded Scheme
implementation and connects to virtually every
framework out there. PF code objects and
interpreter are readily accessible from within PD as
prefixed by the initials pf followed by a space and
then the name of the scripted PF object. It’s a
simple enough approach to extension, but there’s
much more to it, with PF as standalone interpreter
or GNU Emacs interfaced live coding environment.
Under a read-raw-packet operator, PF can well deal
with named pipes which are used within an
mencoder-driven PF example to enable AVI

reading. Goto10.org, home of the pure:dyne
distro, provides repositories and helpful HOWTOs
for PF and associated code.

The netsend and netreceive objects offer
primitive UDP or TCP enabled pluggability for
network connected PD players, and the FUDI
protocol used for communication is simple enough
here to be exploited in self-coded applications. The
two bundled command-line apps, pdsend and
pdreceive, can equally well be used or source code
examined as a decent guide. Yet OSC offers a far
more versatile and readily supported protocol for
inter-pluggable networked and local
communications. OSC is supported by all our
pluggables, including PD, PF and SuperCollider, as
well as receiving excellent library and
implementation attention across a range of
common languages, and environments such as
Csound. It’s an easy protocol to get to grips with
and PD extension OSCx, available again from the
Sourceforge repository, is a good starting point,
furnishing excellent example patches. Command-
line apps dumpOSC and sendOSC, wrapped by
the author in both Common Lisp and as more pipe
friendly tools, are bundled with the extension for
experimentation.

For pure audio-centric pluggability the JACK

Archived online in all

its glory, the 44th

day of an intriguing

degenerative net art

project

The author’s own

devdisplay script

provides ready

visualisation of OS

nature, in this instance

a walk through raw

hard drive data

Art

A workaday Pure

Data (PD) patch,

composed for a

wireless performance

project, leverages

basic netreceive

connectivity and raw

piping

Pluggability is very

much dependent on

interface. In this

instance OSC takes

care of Common Lisp

to PD communications,

with macros wrapping

up otherwise complex

operations

THE USUAL STATE OF AFFAIRS IS TO
INPUT OUR COMMANDS TO THE
SHELL, WITH SUCH ENTRY REFERRED
TO AS STANDARD IN OR STDIN. IT’S
NO SURPRISE THAT OUTPUT TO THE
TERMINAL IS TO STDOUT. YET WE
CAN CHOOSE TO REDIRECT TO FILES
AND NAMED PIPES

Art

56 LinuxUser & Developer LinuxUser & Developer 57

daemon and its troupe of companion apps such as
the Qjackctl GUI controller are hard to beat,
particularly when using sound cards with multiple
I/O possibilities. JACK allows for extensive audio
patching between often abstracted hardware and
software, and does function as an infrastructure
which PD can easily make use of, yet the patch bay
and connections presented by Qjackctl are simply
too rooted in traditional studio methodologies to
allow for advanced experimentation. Rather it’s
more enticing to project the artistic misuse of
technology in taking software engineering
metaphor and running with it out of bounds. A
JACK leak app could easily be coded along a train
of thought from piping to plumbing and thence to
unfortunate leaks and overflows which rightly
mirror memory leaks, buffer overflows allowing
entry into the viral. Such an architecture of leaks,
drips, echoes and accompanying collectors and
containers could be implemented thanks to
infrastructures such as PD with extensions such as
k_jack~, which abuses PD’s audio abstraction layer
to allow for objects to map directly to JACK inlets
and outlets.

Punishing the atoms
Yet there’s still something missing from our web of
well specified pluggability apps, interfaces and
infrastructures; a heavyweight code-centric spider
which under live coding scenarios can plug and
play with all these toys. GNU Emacs, headily
extensible in working use by way of Emacs Lisp
code, and mapping through Inferior Lisp processes,
SuperCollider interface and the like to almost all
other environments, deserves a central, sprawling
position here. Indeed, GNU Emacs itself presents a
vast edifice of what could be termed pluggable
code. Under the steady gaze of the living
interpreter we can come to view pluggability in a
totally different light. Pluggable, dynamic code is
the very dream of the multimedia artist, pushing
beyond the coarse grained Unix methodology of
chunky connected tools.

Yet to some extent, and particularly under ill-
titled Pure Data, the absolute fine-grained
pluggability of data as code and vice versa is
impossible to achieve across the less than dynamic
wall of the PD code object, the closed black box
presenting clean interface. We can bridge the gap
between the code world of GNU Emacs and PD
somewhat with OSC, PF and further extensions
such as k_guile, which allows for PD objects to be
constructed in Guile, but there is still a distinction

between interpreter and object. K_guile, from the creator, Kjetil S.
Matheussen, of a range of k_ prefixed externals which stress connectivity
to SuperCollider and other apps, presents a unique yet to some extent
pinned down code-based window into PD, with the added functionality
of an EVAL hinting towards live coding work.

Indeed, the venerable, primarily text-based SuperCollider (SC)
multimedia coding environment presents a clean code-interface to GNU
Emacs which certainly raises the pluggability stakes and makes of SC an
attractive model, particularly in concert with the largely undocumented
ssc, or S-Expression SuperCollider which implements a Scheme-style read
syntax for the SuperCollider language. Integration with GNU Emacs is
total, yet installation and start-up routines are both brittle and painful.
Short documentation can be found online at the author’s 1010 site.

With OSC and JACK, thanks again to k_jack~, as middlemen, PD and
SC can plug and play reasonably well together, bridging a divide which
stems from PD’s stricter patch model against SC’s more compositional
approach. It’s the core of pluggability, and with such infrastructure in
place it’s less than relevant what favoured apps are thrown into the mix,
with Common Music, Nyquist and Csound as ready contenders worthy
of attention. Yet it’s still very tempting to imagine a PD shorn of old-
fashioned patchwork and mouse monkeying. It’s a lively proposition
which has proved equally attractive to the creator of Packet Forth,
Thomas Schouten, who envisages coding a PD model in the artistic
Common Lisp language, and is thus slowly mapping his PF to Scheme.
It’s worth checking out code, for both libpf and BROOD, his most recent
Scheme-based project, together with embedded intelligent code
musings, on a daily basis from his darcs repositories. These are heady
days indeed for the modern, highly promiscuous plug and play free
software artist.

Reflections on Trusting Trust
<www.acm.org/classics/sep95>

Pure Data
<pure-data.sourceforge.net>

SuperCollider
<supercollider.sourceforge.net>
<www.cnmat.berkeley.edu/OpenSoundControl>

JACK
<jackit.sourceforge.net>

Erich Berger
<randomseed.org>

Aymeric Mansoux
<goto10.org/-/>

Unix for Poets
<www.stanford.edu/class/cs224n/handouts/kwc-unix-for-
poets.pdf>

GEM
<gem.iem.at>

PDP
<zwizwa.fartit.com/pd/pdp>

/dev/fanout
<www.linuxtoys.org/fanout/fanout.html>

Martin Howse
<1010.co.uk>

PF
<zwizwa.goto10.org/darcs/libpf>

ssc
<www.slavepianos.org/rd/sw/sw-40>

Gustav Metzger
<www.luftgangster.de/gmetzger.html>

Yves Degoyon
<ydegoyon.free.fr>

Degenerative
<www.motorhueso.net/degenerative/degenerative.php>

Like some Hiroshimic Easter egg, a hidden
design, destruction is embedded within
both the history and contemporary
architecture of computation, with a nod in
the direction of John von Neumann and his
ubiquitous CPU design model. Von
Neumann’s dual role within the history of
computation and the Manhattan project,
charged with developing and
implementing the first atomic weapons, is
clear. The subsequent history of the
parallelled application of simulations and
game theory to the political manipulations
of the Cold War is less well documented,
but does make for intriguing reading. The
field of auto-destructive art, as pioneered
by artist Gustav Metzger, stands in direct
relation to these atomic issues, acting in
some way as mirror or cathartic
demonstration. Metzger was both actively
involved in anti-nuclear campaigns
throughout the 60s and 70s, as well as

being one of the first artists to interrogate
computation as a highly flexible, expressive
medium. He participated in the seminal
computer art show, Cybernetic Serendipity,
at the ICA, London in 1968, authored
pioneering articles on early computer
graphics, and sketched detailed plans for
auto-destructive works reliant on, and
necessarily embedding, new technology.
One such design proposed a wall-like
sculpture comprised of 10,000 uniform
elements. Over the course of ten years,
each element would be ejected under the
control of a computer programmed by the
artist himself. Such a work was never
completed, and several designs exist for
similar pieces placed within public space.
More recently, and on a smaller scale,
Tsunamii.Net, in collaboration with Team
Fragnetics, presented the live self-
destruction of an online Web server under
a five tonne industrial crusher.

Auto-destructive art in this context
places an emphasis on execution in both
the common sense, and of course in the
light of the executable program itself.
Code impacting on the physical is made
totally explicit in destruction. The code
side of the equation is clarified by
performance works such as those of
activist, artist and core PD coder, Yves
Degoyon whose rm -rf /* work is definitely
a piece unintended for home recitation.
Patching PD frenetically for advanced
audio, Yves issues the deadly command
mid-performance, allowing the audience
to hear and witness, by way of projected
desktop, the return of the machine to a
less than usable state. Similar, though less
dramatic pieces, include the degenerative.
php Web work by Eugenio Tisselli, a work
which corrupts a single character on the
page each time the site is visited. The
page is now totally black.

Art Art

Pipes and OSC plug

the whole world into

PD thanks to a few

handy externals

together with

abbreviated send and

receive objects for

greater patch

abstraction

A series of

performance patches

captured after the

event, a collaboration

with KOP, exhibit the

total pluggability of

the Pure Data

environment

Destruction in Code

AUDIO CAN REVEAL COMPLEX
SYSTEMS IN A PHYSICAL
MANNER, SYSTEMATICS
WHICH WELL SUIT THE
PARADIGM OF PROGRAMMING.
IN CONTRAST, VIDEO IN THIS
CONTEXT IS ALL TOO READY
TO LEAN ON THE CRUTCH OF
MEANING, OF NARRATIVE

