





Which Venom kills, and saveth such as
Venom chance to take.



ERD/TOAD is produced in Hangzhou and Berlin by various
machinic toads and hands in an edition of 100.

This module is numbered ......



A Toad full ruddy I saw.

ERD/TOAD is an hermaphroditic analogue computer driven by the
times of pulses and slopes, designed to model both physical
and imaginary processes underlying the vocal emissions of
various twinned lunar and solar creatures (such as ravens
and toads). Ruddy, bursting and overcharged, running by
turns hot and cold, breaking and stretching tracts and
redefining pulses and control as the venomous spots on the
belly of a bulky blackened TOAD, they bring forth all the
rarest colours.

By default TOAD re-implements physicist Gabriel B. Mindlin’s
ouroboric differential equation which models the mechanisms
of birdsong production, computing oscillations within the
bird’s syrinx, or sound producing organ. TOAD’s analogue
computing elements are normed to follow this model and
generate oscillations; only a clock signal (normed to
multipliers and all clocks) needs to be supplied to generate
audio. This signal can be any changing signal or pulse (it
is converted to a clock internally).



With a few connections, TOAD can also be used to model
chaotic equations from J. C Sprott’s “A New Class of Chaotic
Circuit,” producing oscillations and filtering incoming
signals in the audio domain.

TOAD can compute any number of audible physical and less-
than-physical models wusing three switched capacitance
integrators, a square function, three inverters, one signum
function and seven multipliers (some of these are embedded
within other functions).



When busie at my Book I was upon a certain Night,
This Vision here exprest appear’d unto my dimmed sight:
A Toad full Ruddy I saw, did drink the juice of Grapes

so fast,
Till over-charged with the broth, his Bowels all to brast:
And after that, from poyson’d Bulk he cast his Venom fell,
For Grief and Pain whereof his Members all began to swell;
With drops of Poysoned sweat approaching thus his secret Den,
His Cave with blasts of fumous Air he all bewhited then:
And from the which in space a Golden Humour did ensue,
Whose falling drops from high did stain the soyl

with ruddy hue.
And when his Corps the force of vital breath began to lack,
This dying Toad became forthwith

like Coal for colour Black:
Thus drowned in his proper veins of poysoned flood;
For term of Eighty days and Four he rotting stood
By Tryal then this Venom to expel I did desire;
For which I did commit his Carkass to a gentle Fire:
Which done, a Wonder to the sight, but more to be rehearst;
The Toad with Colours rare through every side was pierc’d;
And White appear’d when all the sundry hews were past:
Which after being tincted Ruddy, for evermore did last.
Then of the Venom handled thus a Medicine I did make;
Which Venom kills, and saveth such as Venom chance to take:
Glory be to him the granter of such secret ways,
Dominion, and Honour both, with Worship, and with Praise.
Amen.
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Fig. 1.6. HELMUT HOELZER's general purpose analog computer after World War |l



Did drink the juice of Grapes.
[analog/ue computing]

Analog computing is about modelling dynamic systems, i.e.,
systems that change over time according to known relationships.
Examples include market economies, the spread and control of
diseases, population dynamics, nutrient absorption, nuclear
chain reactions, and mechanical systems. Models of dynamic
systems are useful similarly to how architectural models
are useful in building design and crash test dummies are
useful in car safety engineering. They offer insights into
matters that would be too difficult, laborious, expensive,
or harmful to study directly. Analog computing can serve a
variety of purposes. It may help understand what is (models
of), or it may help bring about what should be (models
for). It may be used to explain in educational settings,
to imitate in gaming, to predict in the natural sciences,
and to control in engineering - or it may be pursued for
the pure joy of it. Analog computing is also a great way
to learn about calculus, science, and engineering. Analog
computers are modular and analog computer “programming” is
a process of translating the behaviour of a given system
into patched connections between computing elements - the
modules that make up an analog computer. As intermediate
steps, this process requires that temporal behaviour be
described mathematically in the form of differential
equations and, in turn, that these equations be converted
into patch diagrams. While solutions of algebraic equations
are single values, solutions of differential equations
are functions - i.e., relationships that can be presented
as graphs. Consequently, analog computers produce output
in the form of (typically two-dimensional) graphs. All
differential equations can be modelled with just a few kinds
of computing elements: inverters, summers, multipliers,
and, crucially, integrators.



The idea of analog computing is, of course, much older
than today’s predominantly algorithmic approach. In fact,
the very first machine that might aptly be called an analog
computer is the Antikythera mechanism, a mechanical marvel
that was built around 100 B. C. It has been named after the
Greek island AntikOjhra (Antikythera), where its remains
were found in a Roman wreck by sponge divers in 1900. At
first neglected, the highly corroded lump of gears aroused
the interest of Derek de Solla Price, who summarized his
scientific findings as follows: “It is a bit frightening to
know that just before the fall of their great civilization
the ancient Greeks had come so close to our age, not only
in their thought, but also in their scientific technology.”
Research into this mechanism, which defies all expectations
with respect to an ancient computing device, 1s still
ongoing. Its purpose was to calculate sun and moon positions,
to predict eclipses and possibly much more. The mechanism
consists of more than 30 gears of extraordinary precision
yielding a mechanical analogue for the study of celestial
mechanics, something that was neither heard of or even
thought of for many centuries to come.

[The Analog Thing. First Steps]
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Fig. 3.2. Telefunken RA 770 precision analog computer
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X =Y,
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An analogue computer is a piece of equipment whose component
parts can be arranged to satisfy a given set of equations,
usually simultaneous ordinary differential equations. If
a physical system whose properties are to be studied can
be described by such a set of equations, the study may be
carried out on the analogue computer.
In the electronic analogue computer variables are represented
by continuously variable voltages, and integration 1is
performed by a physical process involving the accumulation
of electric charge on a capacitor (switched across in this
implementation) .
R
The analogue computer, by its ability to solve equations
which can be expressed in terms of addition, multiplication,
integration etc., and so simulate different physical
systems on different occasions, 1s a development of the
much older idea of using scale models such as model ships
in a water tank, in the design of ocean-going vessels,
or model aircraft in wind-tunnels when designing full-
scale aircraft. With models, the two systems are similar
physically; with analogues they are only similar in that
they both obey the same equations. However, the analogue
computer is more flexible than a direct model for it can
represent quite different physical systems on different
occasions.

[Schematic Analogue Computer Programming,

A.S. Charlesworth, J.R. Fletcher]
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Abb. 5.86: Gesamtschaltung des ausgefiihrten Rduber-Beute-Systems

Abb. 5.37: Die ausgefiihrte Rechenschaltung




So fast.

[the elements]

The single collector (or summer) row of jacks at the top
of the module constitutes our prima materia. The collector
combines or collects signals and routes these to the first
TOAD twinned output, and in the normed/default configuration
into the first integrator. The summer vyields a negative
(inverted) output, and combines two signals (two jacks far
right), with three sets of multiplied signals (X*Y). There
are thus three multipliers in the collector, additionally
one as part of each of the three integrator cells, and one as
part of the square function below. The multipliers multiply
inputs supplied to their inputs. In the default configuration
all the parts of the equation are routed into this summer/
collector.

A trinity of switched capacitance integrator cells (left,
right and lower) substantiate our mercury. These are the
core of TOAD, combining a four-quadrant analogue multiplier
(with two inputs, and one multiplier CV), followed by a
simple switched capacitor filter (accepting one CLK signal
which is rendered as a pulse internally so can be any kind
of changing signal). There are three outputs (all the same
signal) . Within the normed configuration the three cells are
arranged one after the other in a chain which returns to
the collector in the order left to right and below. In the
default configuration the third integrator is unused.

A SIGNUM function (bottom left) which inserts non-linearity
and follows part of J.C Sprott’s chaos inducing equation as
G(x)= -Bx + Csgn(x). There are two (same signal) outputs. In
the default configuration this element is not used.

A square function (bottom right) which also adds non-linearity
- producing an attenuated square of the two inputs to a single
output. There is one input and two identical outputs.



Two inverters which simply invert a signal (negative to
positive and vice versa). There is one input and one output.
As above, so below. The right hand interpreter (mirrors the
left) 1is unused in the default normed patch.

These elements are combined according to the chosen equation,
laboratory, model or schematic - or, more simply, reflect,
try things out: make new connections and hear what happens.
On the following diagram, all inputs are marked with an
outer circle, and all outputs are darkened circles. Left
and right repeating elements (such as inverters, SIGNUM/
SQUARE, left and right integrators) are mirrored.

inv inv

mercury cv square
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Integrator:

The behavior of an integrator is described by
1 n
€o = — /Zaieidr + e(0)
0 =il

with the weights a; being typically 1 or 10 times the time scale factor. The in-
tegrator is reset to its initial condition e(0) by activating IC-mode. The actual
integration with respect to time takes place during OP-mode. An integration can
be temporarily halted by switching the computer to HALT.

: HALT
[ 0.5 il
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Abb. 5.61: Darstellung der dreidimensionalen Spirale auf dem Oszilloskop bei festgehaltenem
Drehwinkel



Abb. 10.81: Fir das Project Mercury von den Bell Laboratories entwickelter Simulator (nach
[121][S. 569])



Till over-charged with the Broth,
his Bowels all to brast.
[the default setup]

The default or normed TOAD is configured after Gabriel B.
Mindlin’s differential equation which models the mechanisms
of birdsong production, computing oscillations within the
bird’s syrinx, or sound producing organ. Mindlin computed
a pair of differential equations to model the midpoint of
a labium x and its velocity y as follows:

y'=-E(t)x + (B(t) - b)y - cx?y,

Where E(t) and (B (t)-b) are slowly varying temporal
functions, with offsets, which are supplied by CVs for the
collector multipliers. The normed setup(see right) models
this equation and thus only uses the collector, the first
two integrators, the square and the leftmost inverter.

Starting with this default configuration (see second
diagram), supply a single clock to the first integrator
cell. This signal 1is also supplied/normed to the clock
of the second integrator and to the multiplier CV of both
integrators, so sound will be produced with just one single
input. Audio/control outs can be taken from the central
TOAD outs, and from any output from any element in use
(in this case, the first and second integrators, and the
square) . Additional CV signals should be supplied to the
far left collector multiplier input, and the far right
collector multiplier (supplying E(t) and B(t)), as shown
in the diagram. CV signals can also be supplied to the
integrator cell multipliers. So for the default model,
ideally four CVs (which could come from ERD/acquisitio by
way of ERD/VIA or caput draconis) can be supplied, and one
or two pulses, changing signals (from caput draconis or All
Colours). It is advised to add offsets to CV inputs.
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And after that, from poysoned bulk he
cast his venom fell.
[the sprott setup]

TOAD can be used to model one (or more) of the chaotic
equations from J. C Sprott’s “A New Class of Chaotic Circuit,”
producing oscillations and filtering incoming signals in the
audio domain. The equation is defined in this instance as:

X"’ + Ax''T + x' = G(x) - where: G(x)= -Bx + Csgn (x)
which can be re-worked as:
x'""'= (-Bx + Csgn(x)) - Ax'’" - x'

This equation uses our custom SIGNUM function and our three
integrator cells and can be set up quite simply as in
the following diagram with a few patch cables (the SQUARE
function 1is not used in this case). Note that as the first
integrator cell’s CLK is normed to the second and third,
you do not need to supply three CLKs unless you wish to
experiment in this way.

For the Sprott model, ideally six CVs (some of which could

come from ERD/acquisitio, ERD/VIA or caput draconis) can be
supplied, and one or two pulses (from caput draconis, or

All Colours), changing signals.
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For grief and pain whereof his members
all began to swell.
—[the mass-spring-damper model]

TOAD can also model a mass-spring-damper system, or series
of damped oscillations, which also can be used as a state
variable filter.

Here the equation is: x’’=1/m(-(Dx’ + sx) with m as mass,
D as damping coefficient and s as springiness. This is a
simple equation to begin with, and can produce resonant,
clanging and metallic sounds.

x represents the vertical displacement of the spring, x’
is the first derivative of x (which would be speed) and x’'’
is the second derivative (which would be acceleration). We
patch the equation by feeding the lower derivatives (x’ and
x) produced by the first two integrators into the collector.
Paying attention to norms, this can be seen in the next
diagram. We can use the first multiplier pair as VCA for our
input

For the spring model, ideally four CVs (which could come
from ERD/acquisitio by way of ERD/VIA or caput draconis)
can be supplied, and one or two pulses, changing signals
(from caput draconis or All Colours).
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8.2 MASS-SPRING-DAMPER SYSTEM

Vehicle suspensions absorb bumps in the road to provide comfortable and safe
rides. A typical suspension system includes a spring and a damper, which sup-
port the mass of the vehicle, its passengers, and cargo. By selecting the ideal
spring and damper settings for a given

+y mass and impact force, suspensions
systems are tuned to a “sweet spot”
F called critical damping. In this condi-
*  tion, the suspension absorbs as much
. impact energy as possible and returns
Y to equilibrium without overshooting
and oscillating. Testing suspension

characteristics for varying masses and
F, | — impact forces tends to be infeasible in

the field, which makes analog comput-

er modeling an excellent alternative. As

a first step, this requires a description

of the system of interest in the form of

Vv "/ one or more differential equations ar-

ranged such that the highest derivative

is isolated on the left of each equation. To describe a suspension system in this

way, we start by noting that the sum of the forces exerted by mass, spring, and
damper is zero at all times:

FotEt R =0

According to Newton's second law of motion, F_is mass m times acceleration a.
The force with which the damper resists movement F, is a damping coefficient D
times the speed v of its vertical displacement. The force exerted by the spring F,
is a spring coefficient s times its vertical displacement y. The speed v is the first
derivative of vertical displacement over time, which we denote by y, and the ac-
celeration @ is the second derivative of vertical displacement over time, which we
denote by y. This yields my + Dy + sy = 0 or, resolved for the highest derivative j:

F=e-oy+ s

Developing a patching diagram from this second-order differential equation
takes advantage of the equality of both sides of the equal sign. Assuming that y
is known, we model the term on the right of the equal sign using two integrators
and feed the resulting lower derivatives, with coefficients applied and summed,
back to the input of the first integrator, as shown in the diagram on the top right.

Run the patch in REPF (repeat fast) mode at 80 ms OP-time to view a flick-
er-free image on the display system. As the patch runs, change the settings of
coefficient potentiometers 1 through 4 and observe the suspension dynamics
change. This patch also applies to damped oscillators in scenarios other than
vehicle suspension tuning, for example in earthquake safety engineering and
electronic circuit design.
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Abb. 10.86: Tag der offenen Tiir der Brookhaven National Laboratories im Jahre 1958
hier wurde erstmals Tennis for two einer grofieren Offentlichkeit vorgestellt (mat freundlicher
Genehmigung der Brookhaven National Laboratories)
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Abb. 10.87: Erste interaktive Simulation eines Tennisspieles, Tennis for two (Quelle: Brook-
haven National Laboratory, mit freundlicher Genehmigung)

4.5 Mass-spring-damper system

ude stabilization scheme shown in section 4.2, t
e exhibited oscillating behavior with no damping. Th
luces damping using the simple mass-spring-damper system sh
8. In this example y denotes the vertical position of the mass with
ts position of rest. Neglecting any gravitational acceleration acting on

there are three forces to be taken into account: .

he force due to the moving mass, F, = ma = mg,

the force caused by the spring which is assumed to depend linearly on the
strain applied to the spring, Fi = sy, and

- — the force due to the velocity-linear damper, Fy = dv = dy.




66 —— 4 Basic programming

Fm+Fd+Fs=U

(P mij+dj+ 3y = 0
=

Fig. 4.18. Simple mass-spring-damper system

Since this is a closed physical system all forces add up to zero yielding the
following second order differential equation, which describes the dynamic behavior
of this mass-spring-damper system:

my +dy+sy=20

enotes the mass, d is the damper constant, and s the spring constz
hout the damping force Fy this would just be an undamped harmonic osci a-
as in the previous examples.

4.5.1 Analytical solution

This mechanical system is still simple enough to be solved analytically, which is
useful as this solution can be compared later with the solutions obtained by means
of an analog computer. Dividing (4.8) by m yields

d s
j+—y+—y=0. (4.9)
m m
With the following definitions of the damping coefficient
d
= om

and the (undamped) angular eigenfrequency®!

s '
wo=4/—, : & |
m -

i 4289 + wiy = 0. (4.10)

this can be rewritten as

51 The eigenfrequency, sometimes also called natural frequency, is the frequency at which a
system oscillates without any external forces acting on it.



4.5 Mass-spring-damper system =—— 67

A classic approach to tackle such a differential equation is the exponential function.
“Guessing”
y = aet

yields
i = paet and §j = p2aet?.

Substituting these into (4.10) yields
plaett + 2Bpaet’ + wiaett = 0.
Dividing by ae*® results in the following quadratic equation
12+ 2B +wh =0,
which can be readily solved by applying the quadratic formula

P p?
ol Mg R
41,2 5 1 q

h : p =25 and g = w? yielding the solutions
pr2=—f£4/62 - .

we =ik — g2

With the definition of

(4.11) can be rearranged to
12 =—B+iw.

The solution of (4.9) is thus given by the linear combination
y = ae*'? + bet2t
= ge— (BHiw)t | po—(B—iw)t
= ge~Ptelwt | pePlo—ivt
=e Bt (ae™® + be~ ity . (4.12)

As known from complex analysis®?

et = cos(wt) + isin(wt) and

e~ W — cos(wt) — isin(wt).

Applying this to (4.12) yields

y=¢Pt (a( cos(wt) + isin(wt)) + b( cos(wt) — isin(wt)))

52 The function cos(¢) + isin(p) is sometimes denoted by cis(y) in the literature.

U LT T L TLIY GL pI9NT00 PO L] 900 1008201 JSTLLDY UGLD GTLILLUTLLING pJLLTL T LT MLIT D11 L AL,



68 =—— 4 Basic programming

= e ?((a+ b) cos(wt) +i(a — b) sin(wt)). (4.13)

The e~ term is the damping term of this oscillating system while a + b and
a — b are determined by the initial conditions. If it is assumed that the mass
has been deflected by an angle ap at ¢t = 0, this will obviously be the maximum
amplitude of its movement. If the mass is then just released at t = 0 without any
initial velocity given to it, the following initial conditions hold:

a(0) = ag and
&(0) = 0.

From cos(wt) = 1 and sin(wt) = 0 for £ = 0 it follows that
a(0) = (a +b) = ap.

Differentiating (4.13) with respect to ¢ and applying the same arguments yields

&(0) = (a —b)iw =0

d thus @ — b = 0 for this case. So a mass released from a deflected positi )
t = 0 with no initial velocity given to it, is described by

y = e Ptag cos(wt),

which is exactly what would have been expected from a practical point of view.
The position of the mass follows a simple harmonic function and its amplitude is
damped by an exponential term with negative exponent.

The term
o= gl — 89,

describing the angular eigenfrequency, yields

i
w

for the period and is quite interesting as three cases have to be distinguished with

respect to wp and J3:

wo > f[: Subcritical damping, (underdamped) the mass oscillates.

wo = B: Critical damping — the systems returns to its position of rest in an expo-
nential decay movement without any overshoot.

wo < B: In this case the system is said to be overdamped. It will return to its
position of rest without any overshoot but more slowly than with critical
damping.

It should be noted that the damped eigenfrequency w is always lower than wy
depending on the amount of damping, which can be observed directly when the
system is simulated on an analog computer, as shown in the following section.
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Fig. 4.19. Mass-spring-damper system

A

Flg.420 s=.2, d=.8 Fig. 4.21. s=.6, d=.8 Fig. 4.22. s=.8, d=.6 Fig. 4.23. s=.8,d=1

Fig. 1.3. VANNEVAR BuUsH's mechanical differential analyzer (source: [Meccano 1934, p. 443])
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With drops of poysoned sweat,
approaching thus his secret Den.
[some tips and suggestions]

Use extra VCAs between elements and before element outputs
reach the collector. You can use the VCA portions of ERD/
acquistio in this case. Use ERD/amissio to also toggle
feedback connections.

Place other modular elements (such as filters, parts of All
Colours) between integrator cells, or before entry into the
collector. Explore feedback by/through TOAD.

Add fixed offsets to elements (using any offset module or
ERD/acquisitio) .

Sometimes you might need to dispose of an unwanted normed
input - just plug in an unconnected patch cable.

Use high (beyond audio) frequencies for the clock inputs to
the integrator cells. For example, the clock outputs of All
Colours (particularly in the final mode - far right mode on
All Colours).

Make use of other modules (summers, inverters, multipliers,
non-linear elements, VCAs, ERD/conjunctio) as analogue
computing elements. ERD will soon release extended elements
for this purpose.
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His Cave with blasts of fumous Air,
he all bewhited then.
[usage and technicall]

Red stripe or -12V DOWN towards the bottom of the unit.

Connect power connector (red/-12v down) as indicated,
connect an output, CVs and pulses as indicated in the patch
diagrams. Pulses can be any changing signal as there are
internal comparators on all pulse inputs. All signals can
go up to 10V. Output signals can be as hot as this too.

The design is open hardware and can be accessed at:
https://github.com/microresearch/allcolours/tree/master/TOAD




And from the which in space
a Golden Humour did ensue.
[the specifications]

100mA at -12v,

OmA at 5V, 20mm deep.




Whose falling drops from high did
stain the soyl with ruddy hue.
[the credits]

Now God only is the Dispenser of these glorious Mysteries:
I have been a true Witness of Nature unto thee,and I know
that I write true, and all Daughters of Art shall by my
Writings know that I am a Fellow-Heir with them of this
Divine Skill. To the Ignorant I have wrote so plain as may
be, and more I had written if the Creator of all things had
given me larger Commission. Now to Her alone, as is due, be
all Honour, and Power, and Glory, who made all things, and
giveth knowledge to whom she listeth of her Servants, and
conceals where she pleaseth: To Her be ascribed, as due is,
all Service and Honour. And now, Sister, whoever enjoyeth
this rare Blessing of God, improve all thy strength to do
her service with it, for she is worthy of it, who hath
created all things, and for whose sake they were and are
created.

TOAD acknowledges the key inspirational research,
implementations and equations of J.C. Sprott, Jan Hall
and Gabriel B. Mindlin. We would also like to thank Peter
Blasser for sprotted inspiration, and the work of Bernd
Ulmann and anabrid (with their THAT Analog thing bringing
analogue computing to the mass springers). No affiliation,
attribution or direct contribution 1is implied and any
copyrights are maintained.

Manual design by Melissa Aguilar.



The OPERATIONAL AMPLIFIER
is THE QUEEN of ANALOG COMPUTING COMPONENTS
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It Is used to

ﬁ?Change the sign of a voltage
Multiply by a constant greater than unity
Algebraically sum many voltages
Integrate voltages

Abb. 4.2: Der Operationsverstirker als ,Konig” des Analogrechners (nach [577][S. 2-58])



And when his Corps the force of vital
breath began to lack.
[the references]

G. Mindlin: The Physics of Birdsong
B. Ulmann: Analog Computer Programming
B. Ulmann: Analogrecher

J.C. Sprott, A New Class of Chaotic Circuit:
https://sprott.physics.wisc.edu/pubs/paper244.pdf

Analogue computing:
https://chalkdustmagazine.com/features/analogue-
computing-fun-differential-equations/

The Analog Thing - THAT documentation:
https://the-analog-thing.org/docs/dirhtml/

R.T. Prinke, Hunting the Blacke Toade:
https://www.alchemywebsite.com/toad.html

Philalethes exposition of Ripley’s Vision:
http://www.levity.com/alchemy/rpvision.html

This dying Toad became forthwith
like Coal for colour black.
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Sweet are the uses of adversity;
Which like the toad, ugly and venomous,
Wears yet a precious jewel in his head.









